任务
题目和解题方法来源:左神(左程云):深入解析字节跳动算法面试题与数据结构
用C++实现算法(原讲解为Java)。并通过随机新建BST、获得BST的后序遍历数组、判定两BST是否相等进行测试。
源代码于GitHub
题目
已知一个搜索二叉树后序遍历的数组posArr,请根据posArr,重建出整棵树返回新建树的头节点
思路
左边小 右边大 没有重复节点
key words
后序遍历的数组最后是二叉树的根节点,通过比较数值大小找到分界mid将左子树和右子树分开
最优解实现方式:由遍历寻找分界值mid改为用二分法寻找mid,时间复杂度由O(n2 )降至O(nlogn)
解题
BST结构体
struct bst
{
int nodeData;
struct bst* left;
struct bst* right;
};
解题法1:遍历寻找分界值
bst* reconstructBst(bst* root, int* arr, int leftRange, int rightRange)
{
if (leftRange > rightRange)
return NULL;
root = new bst;
root->nodeData = arr[rightRange];
//最末一个节点
if (rightRange == leftRange )
{
root->left = NULL;
root->right = NULL;
return root;
}
int limit;
//得到分界处的角标limit
for (limit = rightRange-1; limit>-1; limit--)
{
if (arr[limit] < arr[rightRange])
break;
}
//建左子树和右子树
root->left = reconstructBst(root->left, arr, leftRange, limit);
root->right = reconstructBst(root->right, arr, limit+1, rightRange-1);
return root;
}
解题法2:二分法寻找分界值
//最优解:二分法得分界处角标
bst* reconstructBst2(bst* root, int* arr, int leftRange, int rightRange)
{
if (leftRange > rightRange)
return NULL;
root = new bst;
root->nodeData = arr[rightRange];
//最末一个节点
if (rightRange == leftRange)
{
root->left = NULL;
root->right = NULL;
return root;
}
//二分法找到分界处的角标mid
int left = leftRange, right = rightRange - 1;
int mid = left + ((right - left) >> 1); //二分
for (; right>=left; )
{
if (arr[mid] > arr[rightRange])
{
right = mid - 1;
mid = left + ((mid - left) >> 1);//落在前半部分
}
else
{
left = mid+1;
mid = right - ((right - mid) >> 1);//落在后半部分
}
}
int limit;
if (arr[mid] < arr[rightRange])
limit = mid;
else
limit = mid - 1;
//建左子树和右子树
root->left = reconstructBst(root->left, arr, leftRange, limit);
root->right = reconstructBst(root->right, arr, limit + 1, rightRange - 1);
return root;
}
测试
随机新建BST
首先利用rand()生成随机数组(rand()在stdlib.h中),再用随机数组建立BST
//生成随机数组
void generateRandArray(int*arr,int size)
{
for (int i = 0; i < size; i++)
{
arr[i] = rand() % 5;
//cout << arr[i];
}
//cout << endl;
}
将随机产生的数组传入创建BST
bst* generateBst(bst*root,int* arr, int size)
{
for (int i = 0; i < size; i++)
{
root = putNode(root, arr[i]);
}
return root;
//lastOrder(root);
}
bst* putNode(bst* node, int data)
{
if (node == NULL)
{
node = new(bst);
node->nodeData = data;
node->left = NULL;
node->right = NULL;
return node;
}
if (data < node->nodeData)
node->left = putNode(node->left, data);
if (data > node->nodeData)
node->right = putNode(node->right, data);
return node;
}
回收分配内存
void recycle(bst* root)
{
if (root->left == NULL && root->right == NULL)
{
delete root;
return;
}
if(root->left!=NULL)
recycle(root->left);
if(root->right!=NULL)
recycle(root->right);
delete root;
return;
}
后序遍历BST
//仅打印
void lastOrder(bst* root)
{
if (root == NULL)
return;
lastOrder(root->left);
lastOrder(root->right);
cout << root->nodeData;
}
//结果保存至数组
void lastOrderSave(bst* root,int*posArr,int&size)
{
if (root == NULL)
return;
lastOrderSave(root->left,posArr,size);
lastOrderSave(root->right,posArr,size);
//cout << root->nodeData;
*(posArr+size)=(root->nodeData);
size++;
}
判定两BST是否全等
bool sameBst(bst* root1, bst* root2)
{
bool result;
if (root1 == NULL || root2 == NULL)
{
if (root1 == NULL && root2 == NULL)
return true;
else
return false;
}
result=sameBst(root1->left, root2->left)&&sameBst(root1->right, root2->right)&& root1->nodeData == root2->nodeData;
return result;
}
main
#include"bst.h"
#include<ctime>
using namespace std;
#define DEBUG false//true//true
#define SOLUTION1 true//false//true
#define SOLUTION2 true//false
#define ARRMAXSIZE 500
int main(void)
{
int batch = 50000;
cout << "begin " << batch << " times test for solution 1:" << endl;
start = clock(); //程序开始计时
for (int i = 0; i < batch; i++)
{
//生成随机数组
int size = 100;
int arr[ARRMAXSIZE];
generateRandArray(arr, size);
//建搜索二叉树
bst* root = NULL;
root = generateBst(root, arr, size);
//后序遍历二叉树结果保存至数组arr
size = 0;
lastOrderSave(root, arr, size);
//由后序遍历数组arr重建搜索二叉树
if (SOLUTION1)
{
bst* reconstruct = NULL;
reconstruct = reconstructBst(reconstruct, arr, 0, size - 1);
//比较二者是否相同,若不同,打印消息
if (!sameBst(root, reconstruct))
cout << "************11111**not same*****111111**********" << endl;
recycle(reconstruct);
}
//由最优解后序遍历数组arr重建搜索二叉树
if (SOLUTION2)
{
bst* reconstruct2 = NULL;
reconstruct2 = reconstructBst2(reconstruct2, arr, 0, size - 1);
//比较二者是否相同,若不同,打印消息
if (!sameBst(root, reconstruct2))
cout << "**********222222****not same*******222222******" << endl;
recycle(reconstruct2);
}
recycle(root);
}
return 0;
}
